
00
0 OFFICE OF NAVAL RESEARCH

I Contract N00014-86-K-0043

TECHNICAL REPORT No. 81

S Dynamics of Observed Reality: Abridged Version of Classical

and Quantum Mechanics

by 4

Azizul Haque and Thomas F. George

Prepared for Publication

in

Condensed Matter Theories, Volume 4
Edited by J. Keller
Plenum, New York

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

August 1988

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

This document has been approved for public release and sale;
its distribution is unlimited.

DTIC
0hLIECTE

AUG 1 91988

H

8 88



UNCLASSIFIED .
SECURITY CLASSIFICATION OF THIS PAGE

I I Form Approved

REPORT DOCUMENTATION PAGE OMSpNo. 0704-0

la- REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distribution

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

UBUFFALO/DC/88/TR-81

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Depts. Chemistry & Physics (If applicable)

State University of New York

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Fronczak Hall, Amherst Campus Chemistry Program

Buffalo, New York 14260 800 N. Quincy Street
Arlington, Virginia 22217

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATIONI (If applicable)
Office of Naval Research Contract N00014-86-K-0043

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Chemistry Program PROGRAM PROJECT WORK UNIT
800 N. Quincy Street ELEMENT NO. NO. IACCESSION NO.
Arlington, Virginia 22217 r

11. TITLE (Include Security Classification)

Dynamics of Observed Reality: Abridged Version of Classical and Quantum M :hanics

12. PERSONAL AUTHOR(S)

Azizul Haque and Thomas F. George

13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 11S. PAGE COUNT
IFROM _____TO I___ August 198 1 15

16. SUPPLEMENTARY NOTATION Prepared for publication in Condensed Matter Theories, Volume 4,

edited by J. Keller (Plenum, New York)

17. COSATI CODES 18. SUBJECT T.[ES (Continue on reverse if necessary and identify by block number)'
FIELD GROUP SUB-GROUP CLASSICAL AN QUANTUM MECHANICS ENTROPY ,

_NIFIED DESCRIPTION APPLICATION TO LIQUID AN]
/

DENSITY MATRIX SOLID ARGON

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

---- :: The present paper is concerned with a unified description of classical and quantum
physics. A different way of thinking about the quantum world is expounded, which already
has led to significant results in statistical mechanics and holds future promise for
quantum mechanics. An explanation is provided for the original motivation in quantum
theory, the fomalisms that have evolved from it, and their differences with the classical
theories. The conceptual difficulty that permeates our view of the microscopic world
is spelled out and a remedy thereof suggested. :

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIEDUNLIMITED 0 SAME AS RPT C] TIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Dr. David L. Nelson (202) 696-4I

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED



To appear in Condensed Matter Theories,
Vol. 4, edited by J. Keller (Plenum,
New York, 1989).

DYNAMICS OF OBSUVM REALITY: ABRIDGU VERSION OF CLASSICAL

AND QUATUK NE( AUCS

Azizul Haque and Thomas F. George
Departments of Chemistry and Physics & Astronomy
239 Fronczak Hall
State University of New York at Buffalo
Buffalo, New York 14260 USA

INTRODUCTION

The present paper is concerned with a unified description of
classical and quantum physics. A different way of thinking about the
quantum world is expounded, which already has led to significant results
in statistical mechanics and holds future promise for quantum mechanics.
An explanation is provided for the original motivation in quantum theory,
the formalisms that have evolved from it and their differences with the
classical theories. The conceptual difficulty that permeates our view of
the microscopic world is spelled out and a remedy thereof suggested.

BACKGROUND

The laws of nature for the microscopic world are very much different
from those of the macroscopic world, though the building blocks of any
macroscopic system are the microscopic particles. Notable differences
are: (1) Indeterminism in classical statistical mechanics merely reflects
our ignorance of initial conditions. In the quantum world indeterminism
seems to be unavoidable even in principle. (2) Unlike classical
mechanics, quantum mechanics makes explicit conflict between the dynamical
description and the process of measurement. Dynamical equations for
microscopic systems are based on objective reality and are reversible in
time, as are the equations of classical dynamics. However, the observed
reality -- the irreversibility of the microworld -- is an outcome of
measurement and thus directly conflicts with the objective reality. (3)
Bose-Einstein (BE) and Fermi-Dirac (FD) statistics incorporate quantum
,mcertainty through the indistinguishability of the particles with respect
to their coordinates. This gives rise to exchange terms in quantum
statistical mechanics. There is no analogue of exchange terms in
classical statistical mechanics. (4) Many particle wavefunctions for the
microworld obey certain symmetry rules. This quantum mechanical
limitation has no immediate counterpart in classical statistics.

One possible way to resolve these conflicts would be to abandon the
objective reality, as advocated by the believers of the Copenhagen

111W A 1, !! ...... %[a



interpretation [1]. The quantum Liouville equation for mixtures, which
describes the dynamics of observed reality for the microworld, would then
be an appropriate dynamical equation. The central task is thus the
evaluation of the quantum distribution function (QDF), because the QDFs
provide a means of expressing quantum mechanical averages in a form which
is very similar to that for classical averages [2]. This is the case with
the Ehrenfest representation (ER), where a correspondence between a
classical trajectory and the expectation values of the corresponding
quantum operators is established [3]. However, in most cases, including
ER. the equations of motion for the average values cf position, momentum,
etc. are not closed and therefore cannot be solved without further
assumptions. Moreover, attempts to write a proper QDF that is positive
and gives the correct individual quantum distributions of position and
momentum have been in vain [2,4]. It is suspected that the quantum
mechanical uncertainty and the noncommutativity of position and momentum
prohibits a phase space construction of the QDFs. For these reasons, it
has not been possible to develop theories for the microworld based on
observed reality, However, in recent years, it has been found that the
Wigner transforms of all the Gaussian QDFs are non-negative, corresponding
to pure states and mixtures (5]. Existence of such phase space QDFs gives
us an opportunity to study the dynamics of the microscopic world based on
observed reality. This is what constitutes the main content of the
present paper.

Our system of investigation is an N-particle statistical system
whose time evolution is described by the quantum Liouville equation for
mixtures [6]. We focus on studying the dynamics of each single particle
in the N-particle ensemble. We do not assume .9 Rriori that the
indistinguishability of the particles is necessary when their de Broglie
wavelengths (A) are greater than or equal to their mean distances (R).
Instead, we measure the quantum uncertainties associated with each
particle in order to understand whether indistinguishability is inherent
in microscopic many-particle systems. The development is based on
constructing a Gaussian density matrix in three-dimensional phase space.
The density matrix is defined by a set of dynamical variables whose
expectation values are considered to be relevant for the dynamics.
Construction of the density function is based on a. maximum entropy
formulation [7], and our choice of the dynamical variables is reflected in
such construction. The self-consistent equations of motion are then
derived for these expectations from the quantum Liouville equation using a
projection scheme [8,9]. The solution of these self-consistent field
(SCF) equations provides the time evolution of the density matrix.

In the next section we derive the equations of motion for the
expectations of these dynamical quantities and construct the corresponding
density function for mixed states. We also show that these equations of
motion can be derived solving the classical Liouville equation for
mixtures. In Sec. III we show that for systems in thermal equilibrium
these equations satisfy a new principle of least action. Again, a simple
combination of classical and quantum laws can be used to generate these
equations. Finally, in Sec. IV we discuss the relative merits of tiie
theories based on observed reality with those of objective reality.

DERIVATION OF THE BASIC EQUATIONS SOLVING QUANTUM LIOUVILLE EQUATION AND

CONSTRUCTION OF THE DENSITY FUNCTION

We characterize our N-particle system by the Hamiltonian
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and a density matrix p(R,R';t) which satisfies the quantum Liouville
equation (QLE)

_dt _ .[H,] E -iLp , (2)

where V is the interaction potential and mk is the mass of the k-th
particle, rk is the coordinate of the k-th particle, and p - I V is its
conjugate momentum. We are interested in an approximate sotution kof the
QLE where the time evolution of the exact N-particle system is described
by a reduced density matrix p re(R,R';t), which is a product of N single
particle density functions,

N

Pre(RR';t) - i 4j(rj, r-;t) , (3)
i-l '

where R is a vector with N coordinate components rl... r. This choice
[Eq. (3)] of the density function excludes the possibility of
incorporating quantum uncertainty into our system through the
indistinguishability of the particles with respect to their coordinates.
We introduce the effect of quantum uncertainty by characterizing each
particle with respect to its position, momentum and their fluctuations.
For this reason, we define each particle in three dimensions using a set
of operators, 0a , a 1 M..., 1, which are x. , Pk , X19 P.P1 and ;p., for
k,2 - 1, 2, 3. In general, to describe tfe dynamtcs of each particle in

thrle dimensions (3D) incorporating quantum uncertainties, we need M -
2.3 + 3.3 - 27 independent operators consisting of a complete set of
linear and bilinear products of ^ and Pk" For notational convenience, we
shall represent these operators in the following matrix form:

A0 -A
A0 - , AI - , A2 -p

A 3 -r~ a1)( - 1) A A4 - ( - a 2).(p - a2)lT T1

A- ( "a) '(p "a2 ) 2 (4)

Here, A0 is the unit operator; A and A are three component vectors; A ,

A and A are 3x3 matrices and I Is the 3x3 unit matrix; aI and a2 are t~e
expectation values of the dynamical quantities A and A2 ; and the
superscript T stands for transpose. The time evolution of the
expectations of these dynamical quantities, <Ai>'s, will provide us with
the average values of position (<A >), momentum (<A >) and their
fluctuations (diagonal terms of <A 3  and <A4>) and coirelations (off-
diagonal terms of <A > and <A > and <A >). <A 5> has the unit of action,
and the role of its Aiagonal elements in the present dynamical description -
will be discussed later. Here, we should note that <A3> and <A 4> are
symmetric matrices.........

To derive explicit expressions for the time evolution of the
expectations, <0 (t)> for each particle J, we use a projection operator
technique in Liou4 tlle space [8,9]. In this space, A and p(t) can be Codes
written as IH>> and Ip(t)>>. Since the exact density matrix p(t) contains lelor
information more than required by the present method, we evaluate 1
expectation values of the dynamical quantities 0ja using
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ajCt) «<0 I2p(t) > - <<0 Iapr (t) > a - 0, 1,... M (5)

For each degree of freedom j, we now define an (M+l)x(+l) overlap matrix
with elements

Df - <<OjlPre(t) 0jo>>

- Tr [0t Pre(t) O] a, 0 - , 1..., M (6)
ja r f

and the Liouville space projection operators

N M

P(t) - «1<0 I(7)
l/e()o> Dj (t0 a# jo

jla,fi-O

The properties of the above projection operator have been discussed in
Refs. 8 and 9. Let us now assume that at some time t - t'

p(t') -- Pre(ti) (8)

Introducing the complementary projection Q(t) - 1 - P(t), along with the
projection operator properties discussed in Refs. 8 and 9, we can then
derive the equations of motion for the 0 (t)'s from the QLE in the form
[9]

aja(t) - -i<<Oj.LIPre(t)> + M (tt') ajp(t) (9a) S

where Mi (t't') is expressed in terms of the 28x28 matrices

Wi (t,t') - -i<<Oja LQ(t)U(tt')Ipre (t')O >> (9b)

RJ(t,t') - <<0 JU(t,t')JP (t')0 >> (9c)
CIO ja re J

and is given by

M
Mi (t, ') - WJ,(t, t' )[RJ (t, t' ) ]7 (9d)

-7-0

Here U(t,t') is the time evolution operator

U(t,t') - exp[-iL(t-t')] (9e)

Equations (9) describe the time evolution of the 27N dynamical quantities
(J - 1, 2,..., N; a - 1, 2,..., 27) and are exact. These equations are
closed for 27N unknown a (t)'s. In these equations, the time derivative
of a (t) at time t depends on all a (t) at the same time. Note that we
assuma 0O to be the unit operatoP and the normalization condition
requiresi-its expectation values to be independent of time, a4 - 1. Now
if we assume that condition (8) holds for all times, then Q(t) (t) - 0 and
we are left with the first term on the right-hand side of Eq. (9a), which
represents a mean-field time evolution of the N-particle system, where the
time evolution of the expectations of the dynamical quantities, 0 ., are
given by

a (t) - - Tr(O ja[H,p re(t)]) U - i<<ja ILIp re(t)>> (10)
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Equation (10) describes the time evolution of the dynamical quantities ~
A A A A A n k

Pk' Xk'l, PkP1 an Xk01 for kl - 1, 2, 3.

To determine directly the quantum uncertainties associated with each
particle, we evaluate explicitly the time evolution of the dynamical
quantities

a01 <i> a2 -(lla,b)

a03 r a( 01)* r a01) > (lic)

04 p <( 2 ).(p a2)(id

0 5 r (? 0 1 )( p a2) > (Ile)

given by

1- Aa 2  (12a)

02 - - ve (12b)

03 a A + Aa T (120)
3 5 5

- V~ - aTV"(12d)

5 -a3 V + A4 ,(12e)

where

2e<> ,V T, A-mn- 1 1 .(13)

Equations (12) describe time evolution of 27 matrix elements which are the
expectations of the physical operators described by Eq. (4). a a for a -

1, 2,..., Mare

alk (t) - <xk> , a02k(t) - <P>(14a,b)

(a 3(t)]kl - <[xk - alk(t)][X2 - al,(t)]> (14c)

(ac4 (t)I kl - <[k- a 2k(t)H[pl - a2l(t)]> (14d)

(5(t)lkl - 2 <1 k - lk )pl - 2 1 (t)]

p - a 22(t)][xk - alk(t)]> (14e)

kl- 1, 2, 3.

These expectation values in quantum mechanics are evaluated either in the
coordinate (r,r') or momentum (p,p') representation.

From Eq. (12), we find that for a successful application of the
present method, the choice of 0 is crucial. 'We construct each 0 from
the physical consideration which ilthe maximum entropy principle [71. We

associate entropy with each particle using the relation
S r[ nOl (15a)
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We then maximize entropy (6S - 0) subject to the constraint condition

Sa a(t) - Tr[O a60 jJ - 0 a- 0, 1,.,1 (15b)

This yields the maximum entropy distribution

(t) - exp [ - )j=(t)01jai (16)

a-0

where the A. (t)'s are Lagrange multipliers and describe the time
evolution of ie density function . This distribution function is
Gaussian in 3D-phase space (q,p) Jand in the corresponding coordinate
representation (r,r'), whose explicit forms are given by1. 1 )T -l1~r 2 T. T -

0(r,r';t) - C exp(- [(rr') Ta (r+r) - (r-r') T - )

+ (r-r)T (a- T a-a)(r-r')
+ - (r+r") Ta 1 a(r-r') - (r 9rD) T a-l (17a)

i)K3 5 3 a1]

with

C - (2-) 3 / 2 te3t ' 1/2 exp[- 1 T -1 ,
1 21a 3 311 , (17b)

and

O(q,p;t) - (2r) 3 BII 112 exp(- -[(q T-T) (pTT)] B- q

(18a)

where B is a matrix given as

5 4
O(q,p;t) is obtained form 0(r,r';t) using the Wigner transform [2]

O(q,p;t) - --]J-- ds <q-sJ (t)Jq+s>e21p 's/JX (19a)

and satisfies

fJ dq dp O(q,p;t) - (19b)

Therefore, the expectation values of the dynamical quantities [Eq. (11)]
in the present method can be evaluated using both the trace operation
(r,r') and the phase space (q,p) integration methods. The time evolution
of these density functions are obtained by solving the coupled set of
equations (12). A ;lose look at these equations shows that they do not
contain ). This suggests that they are completely classical. In fact, we
obtained these TDSCF set of equations (12) also by solving the classical
Liouville equation using the phase space distribution function (18), and
following the same procedure discussed above. The TDSCF set of eouations

d ~
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for the moments ao l
... sa, using Gaussian distribution functions are

therefore complete cl

The present classical set of equations (12) differ from Ehrenfest's
representation due to the fact that they contain additional dynamical
quantities (a3, a4 and a5) and are closed. To understand the potentiality
of the present method, we need extensive application. So far, we have
studied only the equilibrium properties of liquid and solid argon,
assuming the system to be isotropic. The results of this simulation have
been reported in a separate communication [10]. Here we elucidate only
the underlying physics. Of the various dynamical quantities, only the
time evolution of a5 (t), which has the unit of action, shows rapid
oscillations between positive
and negative values. This 8.5
time dependence of a5(t)
implies that at different
times of the measurement each
particle has a different
trajectory, which in turn
suggests that the classical N
trajectory obtained solving 6 .%

(12) does not satisfy the
principle of least action
[11]. The time evolution of 6

this a (t) is shown in Fig. I.

From this figure, we find that Z
the time-averaged trajectory v
for systems in thermal
equiliibrium has 05 - 0. Since -6.i,
our system of investigation is 0.0 10.0 20.0
isotropic, [o] for i o j TIME ( PS
remains zero over all times.
Now substituting <A5> - 0 in
Eq. (12), Fig. 1. Time evolution of the action,. i

0 5 (t) - 7 (r)for i - x, y and z

1 2 (20a) over 20 in a typical run for

Oe -solid trgon (V - 28.096, T - 50.275

2 (20b) K). a(t) is the action along the
i-th airection of phase space and

3  0 (20c) averaged over the entire bath. The
3 0value 1 of a (t) originally3 6 in kg

a -0 (20d) m s has been magnified 10 times
4 in this figure.

That is, for systems in thermal equilibrium, the fluctuations a and a4
are the constants of motion. In the following section, we show taat Eq.
(20) can be obtained using a modified representation of the classical
principle of least action and also from a simple combination of the

Ehrenfest representation with the equations of motion derived from the
quantum uncertainty principle.

ALTERNATIVE APPROACHES TO THE DERIVATION OF THE BASIC EQUATIONS FOR
SYSTEMS IN THERMAL EQUILIBRIUM

Principle of Least Action

We introduce the following principle of least action for each

particle in the N-particle ensemble:
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tb

c-] J dt <L > j - 1, 2,..., N .(21)

a

Here L is the Lagrange operator for the J-th particle and

3 A2

(22

k-i m lR

where its quantum average is

3

<L > / (a~k - dRV()PreRst
Sj 2jk-i 2 a~kl (23)

and the a k2 Is are defined in Eq. (14). Let us -2ow assume that the
extrejum path f~r the 1-th particle is defined by a,(t), whose end points
are a 1(t a and a 1 ty. In 3D phase space

a P i<x 1 ~ ~ a2+j a(41 >jy+ z>i 1 1+j 1 2 k 1 3  .(4

To determine the form of this path, we use the usual procedure of the
calculus of variations.

-2
2 Let us assume that the path is varied away from a (t) by an amount

So I(t), with the condition that the end points are fixeA, that is,

so I(t) So I(tb)- 0 . (25)

Now the condition that (7 (t) be an extremum means

20 1 2aI(aI2 a 2 [a 1 0 (26)5a 5' [ 1  1i c5[o1
to first order in 6a4. Using the definitions (21) and (23), we may write

a 1 +1 - ftdt L (a I + 6a 1, a 2 +6a 2' 1 a3 + s 3, 1 a4 + So 4 )

a

2 -2 th 2 8L 2  2 aL2- a [a 1  +J dt (6a 1 2 +6a 2

a 18Lc

+ a3 8a2 + o4aa1 (27) U

a3  a 4

where12 for example, 8L /8c implies variation of L2 with respect to all
the I elements (k - 1, , 31. Upon integration by parts, the variation
in a~ 5 Iecomes

60 5 m2 I So1iaI i - ftdt (aI( t a1

2 a a82
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aL f I 8L l I aL l--2  + 3 8L2 + 60 4L (28)

O~ 83 a04
I

The first term on the right-hand side of this equation is zero since 6a
is zero at the end points. The second term is zero if the following
condition is satisfied:

,_ 8L2  8L1  aL2
6aldt . ) -I + 603 - + 6a4 I - 0 (29)1 d I  aalI  aa31 aa I

80 81 8 3  04
I k k

Since the variation of L with respect to aI and a contains 01 and a3 for
k o 1, to obtain the extremum path for each particle we need to solve 3N
coupled equations obtained from the variation of a5 (1 - 1, 2,..., N). In
the following, we shall show that Eq. (20) can result from a trivial
solution of these 3N coupled equations. Since between the end points 6al
can take any arbitrary value, the first term in Eq. (29) is zero provided

d L 8L2  30
d(-~) - -~ - 0 

(0dt a.1 1a

These are the Langrtnge equaiions of motion for the quantum-averaged
dynamical quantities a (t) and a2 (t). The second and third terms in Eq.
(29) can only be zero If

6a -6a 0 .(31)

TPis is because, is we differentia-e L of Eq. (23) with respect to aI and
a41 then

aLl a- <V (R)> o 0 ,__(32)

03 83 4 ~ 1 (2

Solving the Lagrange equations (30), we obtain Eqs. (20a,b), and from the
condition (31) we obtain Eqs. (20c,d). Thus, a trivial solution of the 3N
coupled equations shows that there is a principle of least action (21),
from which Eq. (20) can be obtained. In the following subsection, we show
that Eq. (20) can be derived by combining the Ehrenfest representation
with the equations of motion for the fluctuations obtained from the
quantum uncertainty principle.

Extension of the Ehrenfest Repiesentation

Ehrenfest's equations describe the time evolution of the mean values
of the coordinates <x> and momenta <p>. With the Hamiltonian given by Eq. N

(1), the time evolution of these expectations may be written as

- - <p/> - 1, 2......N (33a)
dt .i apj

dp> - - < - - <V'(R)> j - 1, 2,..., 3N (33b) b

These equations do not follow the classical laws of motion due to the fact
that the time derivatives of <x > and <p > are equal to certain average

values whose calculation genrally n4 cessitates the knowledge of the
wavefunctLon *(t). Our TDSCF equations, (20a,b), are identical to these

equations, except that the average values are evaluated using a density
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p

function p r(t). Ehrenfest's equations may thus be viewed as a special

case of our TDSCF set of equations (20), where the contributions of the

fluctuations are not taken into account and the density function

represents a pure state [3,6].

Although the TDSCF set of equations 2 (20) arl classical, 2the timi
evolution of the fluctuations a 3 -<x > - <x.> and 4- <p> - <P >

shows that they always satisfy the iquantm uncirtainty ondition. +he
time evolution of a3, and a for liquid (V - 29.283, T - 89.834 K) and
solid (V - 28.096, T31 50.27 JK) argon usingmthe Lennard-Jones potential
are shown in Figs. 2 end 3, respectively.

20.0 3.0

NAy

W NA

v 12.5 2. 2.0,
II

A

NN

V
- . I'[ . o

5.0 1.0
0.0 20.0 40.0 0.0 20.0 40.0

TIME( PS) TIME ( PS)

3 i

Fig. 2. Time evolution of the dynamical variable a 3 (t) - Z a 3 (t) in the-2 23 i-i

units 1022 m2 obtained by solving Eq. (20) using the predictor

algorithm for liquid (---) and solid (-) argon at the

temperatures 89.834.K and 50.275 K, respectively, and over a time

period of 40 ps. a3 (t) represents the position fluctuation along

the i-th direction of phase space and averaged over the entire

bath.

Fig. 3. The same caption as for Fig. 2, but replacing a 3 with a4 on the

vertical axis with the units 1046 kg2 2 2

In general, we observe that the magnitudes of the fluctuations always
satisfy

- 4 j - 1, 2,..., 3N , (34)

where the magnitude of G is directly proportional to the energy (<E>) of

the system. This in turn suggests that if we have a system such that the

fluctuations satisfy condition (34), then its time differentiation yields

a a + -= 0 j -1,2,..., 3N .(35)

3J~ -4J 4 N'"• ,.°m " a, , ,-, - w. - r-sr,, % s~ , : _: ;W W , _ ! ,, ', .,. '_'fi' / "."'- Jm= -! % %.
'
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Since a and a 4  are not zero from the uncertainty condition, one of the
possible ways to satisfy (35) would be

a3j - 0 j - 1, 2,..., 3N (36a)

4j " 0 j - 1, 2,..., 3N (36b)

Combining Eqs. (33) and (36), we obtain a set of equations analogous to
(20), except that the choice of the density function is still open in the
present case. The density function may be for a single particle or for an
N-particle system. Again, the density function may represent a pure state
or a mixture. For a Gaussian choice of the density function, our TDSCF
set of equations is thus capable of describing the dynamics of all
macroscopic and microscopic systems.

DISCUSSION

We have described a method for studying the dynamics of observed
reality. The observed system may be classical, classical statistical ,
quantum, or quantum statistical. The present development is in phase
space and thus recovers the trajectory concept even for the microscopic
systems. In the present method, the trajectory of a particle is described
by a coupled set of equations (12). These equations represent the time
evolution of the mean values of position (a ) and momentum (a2), their
fluctuations (diagonal elements of a3 and a), their correlations (off-
diagonal elements of , a and a5 ), and t e action terms (diagonal
elements of a 5). Te present study has been restricted to isotropic
systems, where off-diagonal elements vanish.

The diagonal elements of a (t) are identified with action terms
since they have units of action and iheir time evolution is similar to
that of the phase terms (a /)K) in the path integral approach. Thus, our
present method is reminisceni of Feynman's path integral approach [11],
where different values of action correspond to different trajectories. In
the path integral method, optimal trajectories are obtained by invoking
the classical principle of least action. Inspired by this approach, we
have introduced a modified version of the classical principle of least
action [Eq. (21)] in the analysis of our results. It is worth noting
that, in the present method, the density function contains phase
information. In contrast to the path integral approach, the phase
vanishes over the minimum action path.

For a Gaussian choice of the density function [Eqs. (17) and (18)],
the equations of motion (12) are closed and are completely classical. For
an N-particle statistical system, we derived these equations from the
quantum Liouville equation using a projection scheme. It was also assumed
that the SCF density function approximates the exact density function over
all time. This choice of the density function as given in Eq. (3) is
similar to the Hartree approximation, where indistinguisability of the
particles with respect to their coordinates is ignored.

The concept of indistinguishability in quantum statistics did not
originiate from first principles, but rather from th; need to explain
quantum uncertainty. Indeed, that indistinguishabilty is not inherent in
quantum statistics is evident in our model. We characterized each
particle with respect to its position and momentum, and their respective
fluctuations. The time evolution of the fluctuations allows direct
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determination of the quantum uncertainties associated with each particle
(Figs. 2 and 3). These fluctuations are constants of motion over the
minimum action path (6a5 - 0, - 0) and satisfy the quantum uncertainty
condition (34). This suggests that indistinguishability is not a must in
quantum statistics. Thus, all that is needed to describe an N-particle
system is N trajectories with the constraint of minimum action.

It may seem that the validity of this classical description (20)
results from the choice of a normalized Gaussian density function [Eqs.
(17) and (18)], and therefore the inclusion of higher-order moments would
cause a departure from the classical picture. By takin4 higher-older
moments, we introduce fluctuation terms such as a - <x > - <x ><x > -
<x > which are of third order or greater. Of coursl, thele high~r-older S
tems represent a departure from the Gaussian picture, but, at the same
time, go beyond the variances (a3,9a4 ) defining uncertainty in quantum
measurement. Insofar as quantum measurement is random, the choice of a
Gaussian density function is appropriate.

Computer simulation shows that the fluctuations in position and
momentum of each particle are constants of motion over the minimum action
trajectory. Thus, it appears that each particle maintains its distinct
trajectory over all time even though the de Broglie wavelengths of
individual particles overlap. Insofar as computer simulation suggests
that there are N distinct trajectories for an N-particle system, the SCF
approximation (3) is vindicated.

The validity of the SCF approximation in turn suggests that ai. N-
particle system is analogous to N interacting wave vectors in a Hilbert
space. Measurement on each wavevector then yields the density functio.a 0,

n

From the viewpoint of quantum mechanics, the measurement of a dynamical
quantity gives various eigenvalues with corresponding eigenvectors Iu >
and probabilities P . Measurement, therefore, introduces irreversibilipy
in our microscopic description. Indeed, trajectories obtained from the
Schrddinger-Heisenberg picture are indeterministic and consequently time-
irreversible. Yet, a phase space (q,p) representation of the density
function in Gaussian form (18) recovers the element of time reversibility
of measurement (20). Notably, computation of trajectories in our method
requires knowledge not only of the position and momentum but also of their
fluctuations.

Computed trajectories in the present method are unique since the
density function chosen is the one satisfying the maximum entropy
principle. This distributIgn has an important advantage over the
canonical distribution (e " ) in that the energy constraint condition
(6<1> - 0) is eliminated. Our choice of dynamical constraints (15b) in
the construction of the density function (15a) makes our theory suitable
for nonequilbrium statistical processes. Thus, the present method is far
more general than the equilibrium formulations.

In the classical ensemble picture, individual configurations have no
significance, whereas in the quantum case it is possible to obtain energy
eigenvalues (instead of average energies) for bound state systems, even
though the time-energy uncertainty holds. This is because the uncertainty I
principle imposes restriction only on the product of the uncertainties in
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position and momentum (or equivalently energy and time) measurement and
not on the individual uncertainties. Relying on this premise and noting
that bound states, because of their standing wave nature, have no explicit
time dependence, the existence of individual bound energy eigenstates is
assumed in the Schr6dinger picture. Solution of the corresponding wave
equation gives the energy eigenvalues. A striking departure from the
classical ensemble picture is thus evident in quantum physics. In the
present development the concept of the ensemble picture is retained even
in the construction of the density function. Therefore, the concept of
eigenstates, which is central to BE and FD statistics, is superfluous in
the present method. Further, the symmetry rules of Pauli are implicit in
our approach since we do not need explicit knowledge of the probabilities
P [Eq. (37)1. In order to adapt the present method to Fermions,
a~ditional variables are necessary to describe the spin orientation
associated with each particle. This extension will be reported in the
future.

So far, we have confined applications of the present method to
statistical systems only. Nevertheless, it is also suitable for studying
atomic and molecular systems. SInce for an N-particle system we need A
priori knowledge of N rather than N density functions, our approach is
particularly attractive for large molecular systems. These applications
await future studies. In the present method, the kinetic energy (KE) is
evaluated from

3N - ( 2 + a (38)

KE- 2m. 2m (72J [4]jj) .(8

j-1 i j-1 +

The temperature for a classical system is related to the kinetic energy by

the equipartition theorem,

3N

<KE> -N -- ( )2_ kT (39)
j-l1

Because of the appearance of the momentum fluctuation terms o4, the
appropriate definition of temperature in our approach is yet to be
resolved. Here we should note that temperature in Figs. 2 and 3
incorporates the effect of fluctuation.

In summary, the present dynamical description requires knowledge of
position, momentum and their respective fluctuations. This does not allow
precise measurement of either position or momentum. As a consequence, the
Einstein, Podolsky and Rosen paradox [1,4] does not arise.
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